
CXXR: Refactoring the R Interpreter into C++

Andrew R. Runnalls,
University of Kent, UK ∗

25 March 2008

CXXR (www.cs.kent.ac.uk/projects/cxxr) is a project to refactor (reengineer) the
interpreter of the R language, currently written for the most part in C, into C++, whilst
as far as possible retaining full functionality. It is hoped that by reorganising the code
along object-oriented lines, by deploying the tighter code encapsulation that is possible
in C++, and by improving the internal documentation, the project will make it easier
for researchers to develop experimental versions of the R interpreter. The author’s own
medium-term objective is to create a variant of R with built-in facilities for provenance
tracking, so that for any R data object it will be possible to determine exactly which
original data files it was derived from, and exactly which sequence of operations was
used to produce it. (In other words, an enhanced version of the old S AUDIT facility.)

At the time of this abstract:

• Memory allocation and garbage collection have now been decoupled from each
other and from R-specific functionality, and encapsulated within C++ classes.
Classes CellPool, MemoryBank and Allocator look after memory al-
location; GCManager, GCNode, GCRoot and WeakRef look after garbage
collection. (All CXXR classes are within the namespace CXXR.) Class GCRoot
provides C++ programmers with a mechanism for protecting objects from the
garbage collector, as a more user-friendly (and probably less error-prone) alter-
native to the PROTECT/UNPROTECT mechanism used in standard R

• The SEXPREC union of CR is being progressively converted into an extensible
hierarchy of classes rooted at a class RObject (which inherits from GCNode).
This has already happened for vector objects and CONS-cell type objects, and it
is now straightforward to introduced new types of R object simply by inheriting
from RObject.

The proposed paper will:

1. Describe the motivation behind CXXR;

2. Report on progress to date;

3. Illustrate some of the simplified coding practices that CXXR enables;

4. Describe the measures taken to keep CXXR in synch with successive releases of
standard R;

5. Outline future plans.

The paper will assume some familiarity with C programming and with concepts of
object-oriented programming (e.g. in R or in Java), but C++-specific concepts will be
explained as required.

∗Computing Laboratory, The University, Canterbury CT2 7NF. Email:
A.R.Runnalls@kent.ac.uk

1

http:www.cs.kent.ac.uk/projects/cxxr

